
Total Synthesis of Pinnatoxin A

John A. McCauley, Kazuo Nagasawa, Peter A. Lander,
Steven G. Mischke, Marcus A. Semones, and Yoshito Kishi*

Department of Chemistry and Chemical Biology
HarVard UniVersity, Cambridge, Massachusetts 02138

ReceiVed April 14, 1998

In 1995, Uemura and co-workers isolated pinnatoxin A (1) from
the shellfishPinna muricata, determined its gross structure and
relative stereochemistry, and proposed a biosynthetic pathway,
i.e., 2 f 1.1 Pinnatoxin A is one of the major toxic principles
responsible for outbreaks ofPinnashellfish intoxication in China
and Japan.2 Its unique molecular architecture, accompanied by

its pronounced biological activity as a Ca2+-channel activator,
makes pinnatoxin A an intriguing synthetic target.3 In this paper,
we report the first total synthesis of pinnatoxin A, which allowed
the assignment of its absolute configuration as the antipode of1.

Our retrosynthetic analysis of pinnatoxin A is based on
Uemura’s biosynthetic proposal, entailing an intramolecular
Diels-Alder reaction to construct the G-ring as well as the
macrocycle, followed by imine formation to establish the 6,7-
spiro-ring system. Functional group arrangements similar to the
AG-ring system of pinnatoxin A are found in other natural
products, including the spirolides4 and gymnodimine,5 and perhaps
arise via a similar biogenetic pathway, i.e., an intramolecular
Diels-Alder reaction followed by imine formation or vice versa.6

To investigate these key cyclizations, we envisioned the requisite
diene2 as available via a dithiane-based coupling to form the
C.25-C.26 bond and sequential Ni(II)/Cr(II)-mediated couplings
between vinyl iodides with suitable advanced C.6 and C.32
aldehydes, cf. structure2. At the outset of this work, the absolute
stereochemistry of pinnatoxin A had not been determined.

As the entry point into the bis-spiroketal system, we chose the
acid-catalyzed cyclization of diketone3, prepared from 1-pentynol
in 12 steps.7 Treatment with camphorsulfonic acid (CSA)

afforded primarily a 2:3 mixture of C.19 epimeric bis-spiroketals
4 and5 whose structures were determined by X-ray analysis of
their corresponding mono-p-nitrobenzoate derivatives (Scheme
1).8 The ratio of4 and5 was affected by choice of acids, solvents,
and addition of metal ions. In fact, the desired bis-spiroketal5
completely epimerized to the undesired bis-spiroketal4 in the
presence of magnesium bromide, whereas the undesired bis-
spiroketal4 epimerized back exclusively to the natural series under
standard silylation conditions, i.e.,4 f 6. Once silylated at the
tertiary hydroxyl, the bis-spiroketal system became configuration-
ally stable9 and could be transformed into dithiane10via standard
synthetic methods without loss of its stereochemical integrity.

Dithiane10 and iodide117 were coupled undert-BuLi in 10%
HMPA/THF conditions10 and converted to diol12 in two steps
(Scheme 2). Following oxidation, Ni(II)/Cr(II)-mediated cou-
pling11 of the aldehyde with vinyl iodide137 proceeded smoothly
to generate a mixture of C.6-diastereomeric allylic alcohols.
Removal of the primary TBS group and oxidation then furnished
a single diketo-aldehyde14. Completion of the pinnatoxin carbon
skeleton, cf.16, entailed a second Ni(II)/Cr(II)-mediated coupling
between aldehyde14 and iodide 15,7 in the presence of a
bispyridinyl ligand.12 It is noteworthy that the vinylchromium
species adds selectively to the C.32 aldehyde in the presence of
a carbamate carbonyl, an enone, and a ketone.

Our first attempt directed at the biomimetic Diels-Alder
reaction began with removal of the acetonide and formation of
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Scheme 1a

a Reagents and yields: (a) CSA, MeOH,5 (51%) + 4 (30%); (b)
TBSOTf, 2,6-lutidine, 95%; (c) OsO4, NMO; NaIO4, 85%; (d) (i)
4-iodobutyl-p-methoxybenzyl ether,t-BuLi, Et2O, -78 °C, 88%; (ii)
Swern oxidation, 92%; (iii) PPh3CH3Br, n-BuLi, 0 °C, 89%; (e) (i) TBAF,
rt, quantitative; (ii) I2, PPh3, imidazole, 92%; (f) (i) 1,3-dithiane,t-BuLi,
10% HMPA/THF, 92%; (ii) TBAF, 70°C, 95%.
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the bicyclic ketal (Scheme 3). Under the acidic conditions
employed, the C.19 bis-spiroketal stereocenter almost completely
epimerized to the undesired configuration. However, as demon-
strated previously, we could epimerize the C.19 stereocenter of
the mesylate derived from16 back to the desired configuration,
cf. 17, under silylation conditions. The diene was then formed
via SN2′ displacement of the C.32 allylic mesylate with DABCO13

followed by removal of a C.31 proton by treatment with
triethylamine. However, upon concentration, this diene readily

underwent complete dimerization via an intermolecular cyclo-
addition of the diene with the C.33-C.35 olefin.13

In contrast, heating a 0.2 mM solution of the diene in a variety
of solvents led to the desired intramolecular Diels-Alder reac-
tion.14 For example, heating the diene in toluene at 100°C for
24 h gave a 1:1:1 mixture of three out of the eight possible
intramolecular Diels-Alder products, which were separated by
HPLC to yield pure adducts18a-c.7 2D NMR experiments
established the structures of18a-c: desired exo product (18a),
undesired exo product (18b), and one endo product (18c), all
possessing the desired regiochemistry.15 Interestingly, the exo/
endo ratio was enhanced by changing the solvent to dodecane
and reducing the temperature to 70°C. Under these conditions,
the ratio of18a:18b:18cwas 1.0:0.9:0.4, with a ca. 5:1 exo:endo
ratio in a 78% combined yield. It is worthwhile to note that the
facial selectivity leading to the exo products depended on the
arrangement of functional groups around the C.25-C.32 moiety.16

The desired Diels-Alder product18awas converted to amino
ketone19 in two steps. However, attempts to form the imine
between the C.1 amine and C.6 ketone under a variety of acidic
conditions were unsuccessful. This observation, along with the
fact that pinnatoxin A exists as a stable imine in dilute aqueous
acid,1 led us to hypothesize a large energy barrier present for the
imine formation/hydrolysis due to the steric strain in generating
a tetrahedral intermediate adjacent to a quaternary center. To
overcome this obstacle, we heated the neat amino ketone19 to
200 °C under high vacuum for 1 h and obtained a 70% yield of
the desired imine. Finally, thetert-butyl ester was cleaved with
1:1 TFA/CH2Cl2 treatment17 to furnish synthetic pinnatoxin A
[RD -9° (c 0.5, MeOH)], identical in all respects to natural
pinnatoxin A18 [RD +2.5° (c 0.3, MeOH)] except for the sign of
optical rotation. From this information, we conclude that the
absolute stereochemistry of natural pinnatoxin A is the antipode
of structure1. This conclusion was further supported by the
biological tests of synthetic (-)-pinnatoxin A in reference to
natural (+)-pinnatoxin A.18

In conclusion, we have completed the first total synthesis of
pinnatoxin A utilizing a biomimetic intramolecular Diels-Alder
reaction. This synthesis has also established the absolute stereo-
chemistry of pinnatoxin A as the antipode of the structure1.
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Scheme 2a

a Reagents and yields: (a) (i)10, t-BuLi, 10% HMPA/THF, then
addition of11, 71%; (ii) (CF3CO2)2IPh, CaCO3, 82%; (iii) DDQ, 85%;
(b) (i) Dess-Martin oxidation, 90%; (ii)13, 1% NiCl2/CrCl2, DMSO,
55%; (iii) HF‚pyridine, pyridine, THF, 91%; (iv) Dess-Martin oxidation,
91%; (c)15, 33% NiCl2/CrCl2, bispyridinyl ligand, THF, 88%.

Scheme 3a

a Reagents and yields: (a) (i) TFA, CH2Cl2, H2O, 71%; (ii) MsCl,
TEA, -78 °C, 85%; (iii) TESOTf, 2,6-lutidine, 79%; (b) DABCO, TEA,
benzene; 70°C, 0.2 mM diene in dodecane, 78%; (c) (i) HF‚pyridine,
pyridine, THF, 94%; (ii) Pd(PPh3)4, AcOH, toluene, 82%; (d) (i) 200
°C, 1-2 Torr, 70%; (ii) 1:1 TFA/CH2Cl2, 95%.
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